R=U/I По графику вроде U в два раза больше R=2 Ом
пусть АВСА1В1С1 наклонная треугольая призма...тогда ее боковые грани--это параллелограммы...площадь грани АВА1В1 равна 30,а площадь исчисляется по формуле S=ah, следовательно сторона равна 10 . а опущенная на нее высота h1=30/10=3.точно также с гранью ВСВ1С1:
h2=40/10=4.получается что угол между этими высотами прямой.соединим основания высот,получается прямоугольный треугольник.находим его гипотенузу: 3 в квадрате + 4 в квадрате= 25, то есть гипотенуза равна 5.а это высота третьей грани.значит площадь третьей грани = 5*10=50.
площадь боковой поверхности равна 30+40+50=120 квад.метров
Подробнее - на Znanija.com - znanija.com/task/642574#readmore
Центр вписанной окружности - точка пересечения биссектрис, следовательно АО - биссектриса <A=60. В прямоугольном треугольнике HOA, катет против угла в 30 градусов равен половине гипотенузе, следовательно АО=6 см. По теореме Пифагора:
<B=90-<A=30
В прямоугольном треугольнике ABC, катет против угла в 30 градусов равен половине гипотенузе, следовательно АB=
см. По теореме Пифагора:
Подставляем и считаем
Построим треугольник АВМ удовлетворяющий условия задачи.
Так как AH : HM = 4
: 7 то АН=4/11АМ=4/11 * 22=8 см.
Рассмотрим
треугольник АВН:
СО – средняя линия
данного треугольника.
Средняя линия
треугольника параллельна основанию и равна его половине
СО=АН/2=8/2=4 см.
Средняя линия
отсекает треугольник, который подобен данному.
Так как углы
подобных треугольников равны то ∠ВОС= ∠ВНА=105 °.
∠ВНМ является
смежным с ∠ВНА
∠ВНМ=180°-∠ВНА=180°-105°=75° .
Теорема не выполняется для треуг. ABN и ABC так как они не прямоугольные. Выполняется для DBN, у него угол D=90