Ответ:
AB=BC, следовательно треугольник ABC - равнобедренный, значит угол BAC=углу BCA. BM-биссектриса, выходящая из вершины B, отсюда следует, что угол ABM=углу MBC.
Из всего этого следует: треугольники ABM и MBC равны по второму признаку равенства треугольников (по стороне и прилежащим к ней углам) . Т. к. угол KHM-прямой (KH-высота) , а углы HMB и CMB являются смежными (также они равны, как прилежащие углы равных треугольников) , отсюда следует, что KH параллельна BM.
Ef-средняя линия трапеции (AE=EB, CF=FD) =>что EF=(смотри фото)
Объяснение:
Данные треугольники равны по стороне и двум , прилежащим к ней углам (AD-общая сторона)
пусть H - середина ABCD, MH - высота пирамиды MABCD,
MH - медиана, биссектриса и высоты треугольника DBM => H - середина DB=> HL - средняя линия треугольника DMB => 2LH=DH;
AH перпендикулярно BD ( как диагонали квадрата),
AH перпендикулярно МH ( т.к. МH - высота пирамиды)
DB пересекает MH в точке H => AH перпендикулярна плоскости DMB, значит угол HLA = 60° (по условию),
CA = √(CB^2+AB^2)=6√2 (по теореме Пифагора)
HA=1/2CA=3√2
LM=AH/tg60° = √6
DM=2LM=2√6
MH=√(DM^2-DH^2)=√6 (по теореме Пифагора)
Ответ: √6