Расскажу 3-ю. Пусть даны точки А и В и прямая m.
1) Построим точку D, в которой искомая окружность будет касаться прямой m.
a) Если AB||m, то D - пересечение серединного перпендикуляра к АВ с прямой m, и тем самым D построена.
б) Пусть прямая АВ пересекает m в точке С и пусть B лежит между А и С. Тогда по свойству касательной и секущей должно быть СD²=АС·BC.
Строим окружность с диаметром AC, а через B проводим перпендикуляр к AC до пересечения с этой окружностью в точке E. Тогда AEC - прямоугольный треугольник и поэтому EC²=АС·ВС. На m откладываем отрезок CD равный EC, так чтобы угол ACD был острый. Тем самым D найдена.
2) Строим серединные перпендикуляры к AD и к BD. Их пересечение и есть центр искомой окружности.
P.S. Если AB перпендикулярно m и A,B не лежат на m, то такую окружность, ясное дело, построить нельзя.
поскольку сечение у нас не будет изменяться в зависимости от углов и высоты пирамиды, то мы можем разделить её ребро на 5 равных отрезков и проводить их через пропорцию, то есть при максимальной длине равной 5ти отрезкам, длина стороны основания будет равна 5, а при 0, то есть в вершине пирамиды площадь сечения так же нулевая. Беря два отрезка от вершины, мы получаем длину стороны основания равную 2 и, при условии, что основание квадратной формы, мы получаем площадь сечения равную 4.