(sin^4 x + cos^4 x - 1)/(sin^6 x + cos^6 x - 1) = ((sin^2 x + cos^2 x)^2 - 2sin^2 x * cos^2 x - 1)/((sin^2 x + cos^2 x)(sin^4 x - sin^2 x * cos^2 x + cos^4 x) - 1) = (1 - 2sin^2 x * cos^2 x - 1)/((sin^2 x + cos^2 x)^2 - 3sin^2 x * cos^2 x - 1) = (2sin^2 x * cos^2 x)/(3sin^2 x * cos^2 x) = 2/3 ;