6. (2k²-242)x-(|k|+356)y=-105;
a) Уравнение, график которого параллелен оси абсцисс, имеет вид у=а, значит из данного уравнения выразим у:
y= ((2k²-242)x+105)/(|k|+356).
Получаем, что выражение при х должно быть равным нулю:
2k²-242=0;
2k²=242;
k²=121;
|k|=11;
k=-11 или k=11.
Ответ: +-11.
б) Уравнение, график которого параллелен оси ординат, имеет вид х=а, значит из данного уравнения выразим х:
x=((|k|+356)y-105)/(2k²-242).
Выражение при у должно быть равным нулю:
|k|+356=0;
|k|=-356;
Нет решений.
Ответ: такого к не существует.
7. x/5-y/3=-1; |*15;
3x-5y=-15;
Сначала подберем некоторое конкретное решение, например:
х0=0, у0=3.
Тогда
3х0-5у0=-15;
Откуда
3(х-х0)-5(у-у0)=0;
3(х-х0)=5(у-у0);
Так как числа 3 и 5 взаимно простые, то
х-х0=5k, х=х0+5k=0+5k=5k, к∈Z;
у-у0=3k,y=y0+3k=3+3k, k∈Z.
Общее решение уравнения (5k; 3+3k), k∈Z.
Можно записать три целочисленных решения:
при к=0: (0;3);
при к=1: (5;6);
при к=2: (10; 9) и т.д.
Очевидно, что х=4 и ещё x=1/16 )) Или вам решение тоже нужно? ;-) Добавим ОДЗ: x>0, x<>1, x<>1/4. Первый логарифм уравнения приведем к основанию х: (Log_x_4 - log_x_x)/(log_x_4+log_x_x)=(Log_x_4 - 1)/(log_x_4+1). Заменим log_x_4 на t, тогда: (t-1)/(t+1)+1/(t^2)=1. Домножим уравнение на (t+1)*(t^2) и получим: t^3-t^2+t+1=t^3+t^2, значит 2*t^2-t-1=0. D=1+8=9=3^2. t1=(1+3)/4=1, t2=(1-3)/4=-1/2. Обратная замена дает, что x1=4, x2=1/16.
все подходят, кроме 3. вместо n подставляй 5, результат должен быть мееньше 8. как в условии
1) sin0=0; cosП/4=√2/2
4*0+6*√2/2=3√2
2) sin45=√2/2; cos60=1/2
4*√2/2-3*0.5=2√2-1.5
Дальше не вижу смысла сокращать.