<em>Да, может, т.к. сумма двух других должна быть меньше 180°, и это возможно только при условии : при основании быть тупого или прямого угла не может, т.к. они равны и в сумме составят больше 180° или 180°. Но если при основании сумма меньше 180°, то при вершине может быть любой угол, как острый, так или тупой или прямой.</em>
<em>Ответ может.</em>
Пусть существует такой треугольник
тогда 3a=6b a=2b
3a=7c a=7/3c
тогда для треугольника должно выполняться неравенство
a<b+c
a<1/2a+3/7a=13/14*a<a
a<a
мы пришли к противоречию
значит такого треугольника не сущ.
Решение во вложении---------------------------
8) Находим длины сторон.
DN = √(3² + 4² + (15 - 3)²) = √(9 +16 + 144) = √269 = 13.
DC1 = √(3² + 4²) = 5.
NC1 = 15 - 3 = 12.
cos NDC1 = (13² + 5² - 12²)/(2*13*5) = (169 + 25 - 144)/130 = 50/130=5/13.
∠NDC1 = arc cos (5/13) = 1,1760 радиан или 67,380 градуса.
9) BM =√2,
BC1 = 2√2,
MC1 = √(1² + 2² + 1²) = √6.
cos BMC1 = ((√2)² + (2√2)² - (√6)²)/(2*√2*2√2) = 4/8 = 1/2.
∠BMC1 = arc cos (1/2) = 60 градусов.