квадрат катета равен разности квадратов гипотенузы и другого катета ⇒ a²=c²-b²
это теорема Пифагора. она выполнима для треугольника с углом в 90°
1) 90+45+50=185⁰ не верно
2) 90+30+45=165⁰ не верно
3) 90+20+62=172⁰ не верно
4) нет правильного ответа
Треугольнки равны по признаку равенства 2-х сторон и углу между ними:
Углы ABD и BDC равны как накрест лежащие. Стороны АВ и CD равны по условию, AD -общая сторона
Вершины треугольника АВС лежат на окружности, значит углы А, В и С - вписанные и равны половине градусной меры дуг, на которые они опираются. Угол АОС - центральный, поэтому дуга АС равна 80°.
Тогда угол В, вписанный и опирающийся на дугу АС, равен 40°.
<A+<C=180°-40°=140° так как сумма углов треугольника равна 180°.
<A+<C=4x+3x (дано). Тогда х=140°:7=20°. <A=20*4=80°, <C=20*3=60°.
Значит дуга АВ=120° (на нее опирается угол С), дуга ВС=160° (на нее опирается угол А).
Ответ: Дуга АВ=120°, дуга АС=80°, дуга ВС=160°.
Предположим, что прямые a,b и прямая M лежат в плоскости α.
По условию, через точку M можно провести прямую c, которая пересекает прямую a и не пересекает прямую b. Пусть прямая c пересекает прямую a в точке N. Так как прямая a лежит в плоскости α, точка N также лежит в плоскости α. Если две точки прямой принадлежат некоторой плоскости, то вся прямая лежит в этой плоскости. Тогда прямая c лежит в плоскости α, так как две её точки - M и N - лежат в α.
Таким образом, в плоскости <span>α лежат две параллельные прямые a и b, и прямая c, которая пересекает прямую a и не пересекает прямую b. Это противоречит следствию из аксиомы параллельных прямых - если в плоскости прямая пересекает одну из параллельных прямых, то она пересекает и другую прямую. Так как мы получили противоречие, наше предположение о том, что точка M лежит в одной плоскости с прямыми A и B неверно.</span>
Оба угла AOC и ABC опираются на одну и ту же дугу AC.
Но угол ABC вписанный и он равен половине дуги, на которую он опирается, а угол AOC центральный и он равен дуге, на которую он опирается ⇒ ∠AOC = 2 * ∠ABC = 2 * 30° = 60°