1) 1 случай a=0, то уравнение примет вид: (n+1)x + 1=0
x=-1/(n+1), отсюда видно, что n-любое действительное число, кроме n= -1( ибо в знаменателе будет ноль)
2) 2 случай a неравно 0
тогда имеем: ax^2+(n+1)x +1=0, чтобы уравнение имело имело решения дистриминант должен быть больше или равнятся нулю.
D=(n+1)^2 -4a>или равно нулю
(n+1)^2> или = 4а
отсюда видно, что число в квадрате всегда будет больше или равно нулю, если а будет больше или равно нулю
Значит n-любое, если а>или=0
ответ: 1) n- любое , кроме n=-1. 2) n- любое, если а> или=0( вот тут совнемаюсь немного)
Ответ:
Объяснение:
1) y=cosx y=0 x=0 x=π/2 S=?
S=₀∫π/₂ (cosx-0)dx=sinx ₀|π/₂=1-0=1.
Ответ: S=1 кв. ед.
2) y=x² y=2-x S=?
x²=2-x
x²+x-2=0 D=9 √D=3
x₁=-2 x₂=1
S=₋₂∫¹ (2-x-x²)dx=(2x-x²/2-x³/3) ₋₂|¹=(2*1-1²/2-1³/3-(2*(-2)-(-2)²/2-(-2)³/3)=
=2-1/2-1/3-(-4-2+8/3)=1¹/₆-(-8²/₃)=1¹/₆+3¹/₃=(7/6)+(10/3)=(7+10*2)/6=
=(7+20)/6=27/6=9/2=4,5.
Ответ: S=4,5 кв. ед.
40с-5с*(3в+8)=
=40с-15вс-40с=
=-15вс=
=-15*(-0.24)=3.6
Цифру с не понял , это либо 2,9 или 2/9
с=2,9=10,44
с=2/9=0,8
Дано:
Построить график = провести исследование.
Решение:
1. Область определения: знаменатель не равен 0.
Или Х≠ 2 и Х≠0 или D(y)=(-∞;0)∪(0;2)∪)2;+∞).
Две точки разрыва - х=0 и х = 2 - называются выколотые точки.
2. Но это точки разрыва ПЕРВОГО РОДА - устранимые.
Пределы в точках разрыва равны: у= 2.
3. График функции - прямая по формуле: y = 2, но с разрывами.
Рисунок с графиком функции - в приложении.