A16 = a1+(16-1)*d
67=7+15d
60=15d
d= 4
1) 30*3+30= 120(кв). 2) 36*3+36=144(кв). 3)50*3+50= 200(кв). 4) 120*3+120=480(кв)
Обозначим среднее число, как С (Centre), левое от него L (Left), правое от центра R (Right), вверх от центра U (Up) и вниз от центра D (Down). Оставшиеся по углам числа обозначим, как x, y, z и t.
x U y
L C R
z D t
Сумма в верхнем левом квадрате 2х2: x + U + L + C ;
Сумма в верхнем правом квадрате 2х2: U + y + C + R ;
Сумма в нижнем левом квадрате 2х2: L + C + z + D ;
Сумма в нижнем правом квадрате 2х2: C + R + D + t ;
Сумма этих четырёх сумм будет:
S = ( x + U + L + C ) + ( U + y + C + R ) + ( L + C + z + D ) + ( C + R + D + t ) =
= x + 2U + 2L + 4C + y + 2R + z + 2D + t =
= x + y + z + t + 2 ( U + L + R + D ) + 4C ;
Нам нужно добиться минимальности S, тогда в натуральные числа нужно брать минимальные натуральные числа, а значит и число 1. Величина числа C влияет на общую сумму сильней всего, поскольку число С берётся 4 раза, с коэффициентом 4, т.е. как 4С, поэтому в первую очередь минимизировать нужно именно число С. Итак, С = 1 , а 4С=4 .
Оставшиеся величины U, L, R и D влияют на общую сумму с удвоенной силой, поскольку величина ( U + L + R + D ) берётся 2 раза, с коэффициентом 2, т.е. как 2( U + L + R + D ), поэтому в эти величины нужно взять 4 минимальные натуральные числа отличные от единицы, т.е. числа 2, 3, 4 и 5, всё равно в каком именно порядке, т.е. просто:
( U + L + R + D ) = ( 2 + 3 + 4 + 5 ) = 14 ;
2 ( U + L + R + D ) = 28 ;
Мы знаем, что полная сумма должна быть равна 50, т.е.:
x + U + y + L + C + R + z + D + t = 50 .
( x + y + z + t ) + ( U + L + R + D ) + C = 50 .
Подставим сюда величины,
которым мы уже присвоили определённые значения:
( x + y + z + t ) + 14 + 1 = 50 .
x + y + z + t = 35 .
Мы никак не ограниченны в выборе разных чисел x, y, z и t , так что вполне можем подобрать какие-то натуральные числа, чтобы это выполнялось, например ( x + y + z + t ) = ( 7 + 8 + 9 + 11 ) .
Все условия выполнены, числа взяты минимальные, в сумме квадратика 3х3 они дают 50, теперь посчитаем сумму всех сумм 2х2:
S = x + y + z + t + 2 ( U + L + R + D ) + 4C = 35 + 28 + 4 = 35 + 32 = 67 ;
О т в е т : 67 .
<em>(5-5)*5+5/5=1</em>
0*5+1=0+1=1 - верно
<em>(5-5)*(5+5/5) = 0 </em>
0*6 = 0 - верно
<em>(8+8)*(8-8)/8 = 0</em>
16*0/8 = 0/8 = 0 - верно
<em>8+ 8 * (8-8) / 8 = 8</em>
8+ 8* 0 / 8 = 8+ 0 = 8 - верно
Смотри,допустим ,длина полоски = Х(Икс) сантиметров.
Тогда 1/4 =Х:4*1(икс разделить на четыре и умножить на один)
Вот решение:
1)3*4:1=12 (см)-длина полоски.
Ответ: 12 см.
Записывай только решение!