-3х расположена во 2 и 4 четверти
-2 опущена на 2 деления вниз,+2 поднята
НОД (180,3) = 3 - потому что 180 кратно 3
НОК (180,3) = 180 - как уже выше я написала, 180 кратно 3
3+180= 183
4^(cosx) +4^(-cosx) =5/2;
t =4^(cosx).
t +1/t -5/2=0;
2t² -5t +2 =0;
t₁=1/2;
t₂=2 .
1.1) 4^(cosx) =1/2;
2^(2cosx) =2 ^(-1);
2cosx =-1;
cosx =-1/2 '
x₁= -2π/3 +2π*k , k∈Z; *** x= (+/-)2π/3 +2π*k , k∈Z ****
x₂ = 2π/3 +2π*k , k∈Z;
1.2) 4^ (cosx) = 2;
2^(2cosx) = 2;
2cosx = 1 ;
cosx = 1/2 ;
x₃ = -π/3 +2π*K , k∈Z ; *** x= (+/-)π/3 +2π*k , k∈Z ****
x₄= π/3 +2π*K , k∈Z ;
ответ : -2π/3 +2π*k ; 2π/3 +2π*k ; -π/3 +2π*K; π/3 +2π*K ,k∈Z
или
(+/-)2π/3 +2π*k ; (+/-)π/3 +2π*k , k∈Z .
б) - 5π/2 ≤ x₁ ≤ -π/2 ;
- 5π/2 ≤ -2π/3 +2π*k ≤ -π/2 ;
- 5π/2 + 2π/3 ≤ 2π*k ≤ -π/2 + 2π/3;
- 5/2 + 2/3 ≤ 2*k ≤ -1/2 + 2/3;
-11/6 ≤ 2k ≤ 1/6 ;
-11/12 ≤ k ≤ 1/12 ⇒ k=0 значит :
x = -2π/3 .
- 5π/2 ≤ x₂ ≤ -π/2 ;
- 5π/2 ≤ 2π/3 +2π*k ≤ -π/2 ;
- 5π/2 -2π/3 ≤ 2π*k ≤ -π/2 -2π/3 ;
-5/2 -2/3 ≤ 2k ≤ -1/2-2/3;
-19/6 ≤ 2k ≤ -7/6;
-19/12 ≤ -7/6 ; нет целое число .
x₃ = -π/3 +2πK Поиск подходящего целого числа k обычно производится перебором , k= -1 получить -7π/3 ,
еще -5π/3 получится из x₄= π/3 +2πK ,при k= -1 .
ответ : -7π/3 ; -5π/3 ; -2π/3 .
........................................ поздно .............................
Тут не все пункты, так как для них нет ответов на данной функции
б) t1=П/3 t2=-П-П/3=-4П/3
-4П/3 +2Пн < 3x-П/6 < П/3 +2П/н
-4П/3 + П/6 + 2Пн < 3х < П/3 + П/6 + 2Пн
-7П/6 +2Пн < 3х < П/2 +2Пн все части неравенства делишь на 3
-7П/18 +2П/3 н < х < П/6 +2П/3 н
Ответ: (-7П/6 +2П/3 н; П/6 + 2П/3 н)