Однородная система линейных уравнений всегда совместна. Она имеет нетривиальные (ненулевые) решения, если ранг матрицы меньше количества переменных.
а)
1: 1ю строку *2
3ю строку *2
2: из первой строки вычитаем вторую строку, умноженную на 5
из третьей строки вычитаем вторую строку, умноженную на 3
3: из первой строки вычитаем третью строку и располагаем строки в порядке убывания
приведя матрицу к ступенчатому виду, видим, что её ранг равен трём и равен количеству переменных => СЛУ имеет только одно тривиальное (все переменные равны 0) решение
б)
1: из первой строки вычитаем удвоенную вторую строку
из третьей строки вычитаем утроенную вторую строку
2: умножаем первую строку на -2
меняем местами первую и вторую строку
3: вычитаем из третьей строки вторую строку и меняем их местами, таким образом приводя матрицу к ступенчатому виду
видим, что ранг матрицы равен 3 и равен количеству переменных => СЛУ имеет только одно тривиальное решение