Формула канонического уравнения прямой АВ:
<span>x - xa y - ya z - za
--------- = -------- = ---------
xb - xa yb - ya zb - za
</span>Подставим в формулу координаты точек:
x - 2 y - (-1) z - 0
-------- = ---------- = --------
(-2) - 2 2 - (-1) (-1) - 0
В итоге получено каноническое уравнение прямой AB:
x - 2 y - (-1) z - 0
-------- = ---------- = --------
-4 3 -1
Составим параметрическое уравнение прямой AB.
Воспользуемся формулой параметрического уравнения прямой:
<span>x = l t + x1
y = m t + y1z = n t + z1
где:
- {l; m; n} - направляющий вектор прямой, в качестве которого можно взять вектор AB;
- (x1, y1, z1) - координаты точки лежащей на прямой, в качестве которых можно взять координаты точки A (2; -1; 0).
</span>AB = {xb - xa; yb - ya; zb - za} = {-2 - 2; 2 - (-1); -1 - 0} = {-4; 3; -1}
В итоге получено параметрическое уравнение прямой АВ:
<span>{x = -4t + 2
{y = 3t - 1
<span>{z = -t.
Каноническое уравнение прямой ВС:
x - xb y - yb z - zb
--------- = -------- = ---------
xc - xb yc - yb zc - zb
Подставим в формулу координаты точек:
x - (-2) y - 2 z - (-1)
-------- = ---------- = ---------
3 - (-2) 4 - 2 2 - (-1)
В итоге получено каноническое уравнение прямой BC:
x + 2 y - 2 z + 1
-------- = ---------- = --------
5 2 3
Составим параметрическое уравнение прямой BC.
Воспользуемся формулой параметрического уравнения прямой:
x = l t + x1
y = m t + y1z = n t + z1
где:
- {l; m; n} - направляющий вектор прямой, в качестве которого можно взять вектор BC;
- (x1, y1, z1) - координаты точки лежащей на прямой, в качестве которых можно взять координаты точки B(-2; 2; -1).
BC = {xc - xb; yc - yb; zc - zb} = {3 - (-2); 4 - 2 ; 2 - (-1)} = {5; 2; 3}
В итоге получено параметрическое уравнение прямой BC
</span></span>{x =5t - 2<span>
{y = 2t + 2
{z = 3t - 1.
Каноническое уравнение прямой AС:
x - xa y - ya z - za
--------- = -------- = ---------
xc - xa yc - ya zc - za
Подставим в формулу координаты точек:
x - 2 y - (-1) z - 0
-------- = ---------- = ---------
3 - 2 4 - (-1) 2 - 0
В итоге получено каноническое уравнение прямой AC:
x - 2 y + 2 z
-------- = -------- = --------
1 5 2
Составим параметрическое уравнение прямой AC.
Воспользуемся формулой параметрического уравнения прямой:
x = l t + x1
y = m t + y1z = n t + z1
где:
- {l; m; n} - направляющий вектор прямой, в качестве которого можно взять вектор AC;
- (x1, y1, z1) - координаты точки лежащей на прямой, в качестве которых можно взять координаты точки A (2; -1; 0).
AC = {xc - xa; yc - ya; zc - za} = {3 - 2; 4 - (-1) ; 2 - 0} = {1; 5; 2}
В итоге получено параметрическое уравнение прямой AC
{x = t + 2
{y = 5t - 1
{z = 2t. </span>
<span>x - xa y - ya z - za
--------- = -------- = ---------
xb - xa yb - ya zb - za
</span>Подставим в формулу координаты точек:
x - 2 y - (-1) z - 0
-------- = ---------- = --------
(-2) - 2 2 - (-1) (-1) - 0
В итоге получено каноническое уравнение прямой AB:
x - 2 y - (-1) z - 0
-------- = ---------- = --------
-4 3 -1
Составим параметрическое уравнение прямой AB.
Воспользуемся формулой параметрического уравнения прямой:
<span>x = l t + x1
y = m t + y1z = n t + z1
где:
- {l; m; n} - направляющий вектор прямой, в качестве которого можно взять вектор AB;
- (x1, y1, z1) - координаты точки лежащей на прямой, в качестве которых можно взять координаты точки A (2; -1; 0).
</span>AB = {xb - xa; yb - ya; zb - za} = {-2 - 2; 2 - (-1); -1 - 0} = {-4; 3; -1}
В итоге получено параметрическое уравнение прямой АВ:
<span>{x = -4t + 2
{y = 3t - 1
<span>{z = -t.
Каноническое уравнение прямой ВС:
x - xb y - yb z - zb
--------- = -------- = ---------
xc - xb yc - yb zc - zb
Подставим в формулу координаты точек:
x - (-2) y - 2 z - (-1)
-------- = ---------- = ---------
3 - (-2) 4 - 2 2 - (-1)
В итоге получено каноническое уравнение прямой BC:
x + 2 y - 2 z + 1
-------- = ---------- = --------
5 2 3
Составим параметрическое уравнение прямой BC.
Воспользуемся формулой параметрического уравнения прямой:
x = l t + x1
y = m t + y1z = n t + z1
где:
- {l; m; n} - направляющий вектор прямой, в качестве которого можно взять вектор BC;
- (x1, y1, z1) - координаты точки лежащей на прямой, в качестве которых можно взять координаты точки B(-2; 2; -1).
BC = {xc - xb; yc - yb; zc - zb} = {3 - (-2); 4 - 2 ; 2 - (-1)} = {5; 2; 3}
В итоге получено параметрическое уравнение прямой BC
</span></span>{x =5t - 2<span>
{y = 2t + 2
{z = 3t - 1.
Каноническое уравнение прямой AС:
x - xa y - ya z - za
--------- = -------- = ---------
xc - xa yc - ya zc - za
Подставим в формулу координаты точек:
x - 2 y - (-1) z - 0
-------- = ---------- = ---------
3 - 2 4 - (-1) 2 - 0
В итоге получено каноническое уравнение прямой AC:
x - 2 y + 2 z
-------- = -------- = --------
1 5 2
Составим параметрическое уравнение прямой AC.
Воспользуемся формулой параметрического уравнения прямой:
x = l t + x1
y = m t + y1z = n t + z1
где:
- {l; m; n} - направляющий вектор прямой, в качестве которого можно взять вектор AC;
- (x1, y1, z1) - координаты точки лежащей на прямой, в качестве которых можно взять координаты точки A (2; -1; 0).
AC = {xc - xa; yc - ya; zc - za} = {3 - 2; 4 - (-1) ; 2 - 0} = {1; 5; 2}
В итоге получено параметрическое уравнение прямой AC
{x = t + 2
{y = 5t - 1
{z = 2t. </span>
0
0