В четырехугольнике сумма всех углов 360 градусов, углы ОАВ и ОВА равны и по 90 градусов. 360=90+90+68+х;
х=360-90-90-68;
х=112 градусов
210+х=6310
х=6310-210=6100
y+795=42995
y=42995-795=42200
38420-z=6420
z=38420-6420=32000
w-6159=16659
w=16659+6159=22818
135 т.к его нет в таблице квадратов
1257-859=398 ягід на третьому кущі
1257-850=407 ягід на першому кущі
859-407=452 ягоди на другому кущі
===================
Поделим квадрат 2018X2018 по горизонтали на два прямоугольника 1009X2018. Назовём квадрат с вершинами в серединах клеток <u><em>правильным</em></u>, если он делится этой прямой на две равные части. Назовём квадрат с вершинами в серединах клеток <u><em>странным</em></u>, если его стороны не параллельны сторонам клумбы, при этом странный квадрат не считается правильным ни при каких обстоятельствах. <u><em>Степенью</em></u> <u><em>квадрата</em></u> назовём количество уже поставленных кустов в его вершинах. Изначально степень всех квадратов равна нулю. Итак, стратегия:
Первый игрок своим ходом ставит куда-то куст.
1) Если при этом степень какого либо квадрата стала равна 3, то второй игрок ставит куст в последнюю вершину этого квадрата и выигрывает.
2) В противном случае, второй игрок ставит куст симметрично относительно прямой, которой делился на две равные части квадрат в самом начале. В таком случае, к степени некоторых неправильных (и странных) квадратов прибавляется 1 (с учётом хода первого игрока) (если прибавится 2, то квадрат правильный), а к степени некоторых правильных квадратов прибавляется 2 (с учётом хода первого игрока) (если прибавится 1, то квадрат неправильный (или странный)). Значит, после хода второго игрока не найдётся квадрата, степень которого была бы равна 3, иначе такой квадрат существовал и после хода первого игрока (пункт 1).
Так как второй игрок не проиграет, он выиграет.
Ответ: Выиграет второй игрок.