Замена sqrt(x+4)=t; x+4=t^2; x=t^2-4; dx=2tdt
∫((t^2-4)^2-5(t^2-4)+6)2tdt/t=2∫(t^4-8t^2+16-5t^2+20+6)dt=
=2∫(t^4-13t^2+42)dt=2t^5/5-13t^3/3+42t+c=
=2sqrt(x+4)^5/5-13sqrt(x+4)^3/3+42<span>sqrt(x+4)</span>
2x²-128=0
2x²=128
x²=128:2
x²=64
x₁=8 , x₂=-8
2x²-72=0
2x²=72
x²=72:2
x²=36
x₁=6 , x₂=-6
Сначала найдем количество удовлетворяющих условию исходов.На 1 месте может стоять 1,2,3 или 4, это не столь важно(5 не может, позже поймешь). То есть 4 варианта. На 2 месте числа может стоять любая цифра, кроме 5 и той, что уже использовали, значит, 3 варианта. Т.к. цифры не должны повторяться, то 5 мы ставим в конец, чтобы число делилось на 5. Тогда тут только 1 вариант. Найдем количество исходов умножением. 4*3*1=12.Теперь найдем количество всех возможных.Такой же логикой: 5*4*3=60.Тогда вероятность p=12/60 = 1/5 = 0,2
Если функция чётная, то f(x)=f(-x)
(-x)^11=-x^11 следовательно функция нечётная т.к. f(-x)=-f(x)
1) диагонали параллелограма равны.
4) сумма углов четырёхугольников равна 360 градусов