X⁴ + 2x³ - 3x² + 2x + 1 = 0
Перед нами возвратное уравнение.
Разделим его на x² (x ≠ 0):
x² + 2x - 3 + 2/x + 1/x² = 0
x² + 1/x² + 2(1/x + x) - 3 = 0
x² + 2 + 1/x² + 2(1/x + x) - 5 = 0
(x + 1/x)² + 2(1/x + x) - 5 = 0
Пусть t = (x + 1/x).
t² + 2t - 5 = 0
D = 4 + 5·4 = 24 = (2√6)²
Обратная замена:
Ответ:
Sin(2p+a)=sin(a)
cos(p+a)=-cos(a)
sin(-a)=-sin(a)
cos(-a)=cos(a)
=> sin(a)-cos(a)-sin(a)+cos(a)=0
.................................