Решение
<span>2cosx+cos2x=2sinx
</span><span>2cosx+(2cos</span>²<span>x-1)-2sinx=0
</span><span>2cosx+2cos</span>²<span>x-(sin</span>²<span>x+cos</span>²<span>x)-2sinx=0
</span><span>2cosx+2cos</span>²<span>x-sin</span>²<span>x-cos</span>²<span>x-2sinx=0
</span><span>cos^2x+2cosx-sin</span>²<span>x-2sinx=0
</span><span>Произведём группировку:
</span><span>cos</span>²<span>x-sin</span>²<span>x+2cosx-2sinx=0
</span><span>(cosx+sinx)(cosx-sinx)+2(cosx-sinx)=0
</span><span>выносим общий множитель. за скобки
</span><span>(cosx-sinx)(cosx+sinx+2)=0
</span><span>Решаем по отдельности каждое уравнение:</span><span>
</span><span>1) cosx-sinx=0 / делим на cosx≠0
</span><span>1-tgx=0
</span><span>tgx=1
</span><span>x=</span>π<span>/4+</span>π<span>k, k </span><span>∈</span><span>Z
</span><span>2)
cosx+sinx= - 2
</span><span>√2(1/√2*cosx+1/√2*sinx)=
- 2
</span><span>sin(</span>π<span>/4)cosx+cos(</span>π<span>/4)*sinx=
-2/√2
</span><span>sin(</span>π<span>/4+x)= -√2
</span><span>-√2=1,41
</span><span>нет решений, , так как </span><span> </span><span>x</span><span>∈</span><span>[-1;1]
</span><span>Ответ: : </span>π<span>/4+</span>π<span>k, k </span><span>∈</span><span>Z</span>
<span> </span>