Записать уравнение касательной и нормали, к кривой y=ln(x) в точке x₀<span>=3.
Решение
Уравнение касательной к кривой в точке с координатами (x</span>₀;y₀) определяет уравнение
y - y₀ = y'(x₀)·(x - x₀)
где y'(х₀)<span> - производная исходной функции в точке касания.
Найдем производную функции
y'(x) = (ln(x))' =1/x
Значение производной в точке х</span>₀=3
y'(3) =1/3
Координаты точки касания: х₀ = 3; у₀ = ln(3)
Запишем уравнение касательной к кривой y=ln(x) в точке х₀=3
y - ln(3) = (1/3)(x - 3)
y = x/3 - 1 + ln(3)
Уравнение касательной определяется уравнением
y - y₀ = -(1/y'(x₀))·(x - x₀)
y - ln(3) = -3·(x - 3)
y = -3x + 9 + ln(3)
Шляпа стоит Х
тогда плащ 90+х
калоши 2х-30
линейное уравнение
90+х+х+2х-30=140
х=20
<span>Итого: шляпа 20, плащ 110, калоши 10</span>
100+8=108\% стоимость плиты с доставкой
108\%=1,08
8100:1,08=7500 стоимость плиты без доставки
======================