Приравняем 2 уравнения, решим его. ПРи решении получившегося квадратного уравнения примем дискриминант равным нулю, так как по условию прямая и парабола имеют только одну точку, то есть должен быть только 1 корень.
2 x^2 - 5 x + 1 = a x - 7;
2 x^2 - 5 x - ax +8 = 0;
2x^2 - (5 +a)*x + 8 =0;
D =0; ⇒ (5+a)^2 - 4*2*8 =0;
25+10a +a^2 - 64= 0;
a^2 + 10 a - 39 =0;
a1 = - 13: a2 = 3.
Ответ при а= - 13 и при = 3
<span>(1/3x^-1 y^2)^-2=9x</span>²y^-4=9x²/y^4
5x² + 20x = 0
5x( x + 4) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
5x = 0
x = 0
x + 4 = 0
x = - 4
-3x²-13x+30=0 (:-1)
3x²+13x-30=0
d=b²-4ac=169-360=191
x1=-13+191/6=178/6=<span>29,6
x2=-13-191/6=-204/6=34
</span><span> - 3 ( Х - 29,6 ) * ( Х - 34 )</span>