Значит боковое ребро равно 5, а ребро основания равно 6. Находим высоту треугольника боковой поверхности
sm=√(5^2-(6/2)^2)=4
S=1/2*4*6=12
AK=KC по второму, вроде признаку
Потому что 2 стороны и угол равны
Рассмотрим прямоугольный треугольник АВС, где АС -- наклонная, АВ -- перпендикуляр, ВС -- проекция наклонной.
ВС=8√3 -- как катет, лежащий против угла 30°
АВ²=АС²- ВС²= (16√3)²-(8√3)²=576
АВ=24
<span>Дана правильная 4-угольная пирамида SABCD, сторона a основания у которой равна 4 см, расстояние OK от центра основания до бокового ребра равно 2 см.
Рассмотрим осевое сечение ASC через противоположные боковые рёбра.
Косинус угла АОК = 2/(2</span>√2) = 1/√2. Угол АОК = КАО = 45 градусов.<span>
Из подобия треугольников АОК и ASO находим:
- боковое ребро AS = 2</span>√2*√2 = 4 см.
- высота пирамиды Н = d/2 = 2√2 см.
Так как сторона основания и боковые рёбра равны по 4 см, то все углы боковой грани, в том числе и при вершине, равны по 60 градусов.
Угол между боковыми гранями - это угол ДКВ, где ДК и КВ - высоты из вершин В и Д на ребро SA.
ДК = КВ = 4*cos 30° = 4*(√3/2) = 2√3 см.
Тогда угол ДКВ равен:
∠DKB = 2arc cos (OK/KD) = 2arc cos(2/2√3) = <span>
<span>109,4712 градуса.</span></span><span>
</span>
∠ВАС = 180° - ∠DAB = 180° - 40° = 140° (т.к. ∠DAB и ∠ВАС — смежные).
∠В = 180° - ∠С - ∠ВАС = 180° - 30° - 140° = 10° (т.к. сумма внутренних углов треугольника равна 180°).
Ответ: 140°, 10°.