Если треугольник равнобедренный, то
1. Углы при основании равны.
2. Биссектриса, проведенная к основанию, является медианой
3. и высотой
Доказательство:
Проведем биссектрису ВН.
АВ = ВС так как треугольник равнобедренный,
∠АВН = ∠СВН, так как ВН - биссектриса,
ВН - общая сторона для треугольников АВН и СВН, значит
ΔАВН = ΔСВН по двум сторонам и углу между ними.
Из равенства треугольников следует:
1) ∠ВАС = ∠ВСА,
2) АН = НС ⇒ ВН - медиана,
3) ∠АНВ = ∠СНВ, а так как они смежные, их сумма 180°, значит
∠АНВ = ∠СНВ = 90°. Значит, ВН - высота.
Sсект = πR²·α / 360°
Два радиуса разбивают круг на два сектора:
Sкруга = πR² = 16π м²
Sсект ₁ = π · 4² · 36° / 360° = 1,6π м²
Sсект ₂ = 16π - 1,6π = 14,4π м²
Треугольник равнобедренный, следовательно высота ВК разделит треугольник АВС на два равных треугольника АВК и ВСК
Получается, что периметр АВС = 40*2=80см
Сумма углов треугольника равна 180 градусов. Так как треугольник равнобедренный то угол А равен углу С ранны 67 градусов, так как это углы при основании.