V = πR²H - это объём цилиндра.
5000 = πR²*20
πR² = 5000:20 = 250(см) - это площадь основания цилиндра.
На объём детали приходится πR²h = 250 *12 = 3000(cм³)
V=8,23*5,5*4,2=190,113 м^3
Sобщ=45,256 м^2
Sбел=<span>45,256*0,909=41,138м^2</span>
Рассмотрим ΔАВД, где АВ=7 см, АД=12 см, ВД=11 см.Найдем площадь ΔАВД по формуле Герона:S(АВД)=√(p(p-a)(p-b)(p-c)=√(15*3*4*8)=√1440≈38 см²Найдем высоту ВН из формулы площади треугольника:
S=1\2 * АД * ВН
38=6*ВН
ВН≈6,3 см
Найдем площадь трапеции
S=(АД+ВС)\2*ВН=(9+12)\2*6,3≈66,15 см²
А) 1=50 2=110 3=70
б)1=125 2=55
в)1=не могу сообразить, пардон 2=40 3=49
Опустим высоты из т. В и С на основание АД; АЕ=(10-8)/2=1см; высота ВЕ - катет прямоуг. тр-ка АВЕ; уголА=60гр (180-120); угол ВАЕ=30гр. ( по свойству острых углов прям. тр-ка); tg30=АЕ/ВЕ=корень из 3/3; 1/ВЕ=1/(кор. из3/3); ВЕ=корень из3; это высота; S=1/2(ВС+АД)*ВЕ=1/2(8+10)*корень из 3=9корней из3 - это ответ.