<u>Теорема: </u><em> Величина угла, образованного касательной и хордой, проходящей через точку касания, <u>равна половине величины дуги, заключённой между его сторонами</u></em>
Я думаю так: Пусть CF=х Тогда х:8=(30+х):10
240+8х=10х
240=2х
х=120
Ответ: 120 метров
<span>Дано точки А(3;-4;2) и В(-5;6;0).
Найти:
А) длину отрезка AB:
|АВ| = </span>√((-5-3)²+(6+4)²+(0-2)²) = √(64+100+4) = √168 = 2√42 ≈ <span>
12,96148</span>.
<span>Б) координаты средины отрезка АВ (пусть это точка С):
С = ((3-5)/2=-1; (-4+6)/2=1; (2+0)/2=1) = (-1; 1; 1).
В) точку оси Оx (пусть это точка М), равноудаленную от точек А и В.
Обозначим координаты точки М(x, y, z).
По заданию М</span>y = 0, Мz = 0, АМ² = ВМ².
АМ² = (х-3)²+(0-(-4))²+(0-2)² = х²-6х+9+16+4 = х²-6х+29.
ВМ² = (х+5)²+(0-6)²+(0-0)² = х²+10х+25+36+0 = х²+10х+61.
Приравняем: х²-6х+29 = х²+10х+61.
<span> 16х = -32.
х = -32/16 = -2.
Ответ: точка М(-2; 0; 0).
</span>