<em>На основании только этих данных доказать подобие трапеций невозможно. </em>
Если прямые пересекаются, то их уравнения равны
получаем систему
2х-у=-8
х+2у=6
выражаем, что душе угодно:
1)можно х = 6-2у
тогда подставляем в второе
12-4у-у=-8
5у=20
у=4
х=-2
2)можно через у=2х+8
тоже подставляем во второе
х+4х+16=6
5х=-10
х=-2
у=4
Абсцисса это х=-2
1) пусть меньший угол равен х, больший угол равен 5х.
х+5х=90,
6х=90, х=15°, ∠ОАD=15°, ∠ОАВ=5·15=75°.
По условию АС=6 см, тогда ОА=ОВ=ОС=ОD=3 см.
ΔАОВ. ∠АОВ=30°. По теореме косинусов АВ²=АО²+ВО²-2·АО·ВО·соs30°,
АВ²=9+9-2·3·3·√3/2=18-9√3≈2,41,
АВ≈1,55 см.
ΔАОD. АD²=АО²+DО²-2·АО·DО·соs150°=18+9√3≈33,59.
АD≈5,8 см.
Площадь АВСD равна АВ·АD=1,55·5,8≈9 см².
3) ВD⊥АD, АВ=2√2, ВС=2√3, ∠ВАС=60°.
ΔАВD. ∠АВD=90-60=30°.АD=АВ/2=√2.
ВD²=(2√2)²-(√2)²=8-2=6; ВD=√6.
ΔВСD.соsВСD=ВD/ВС=√6/2√3=√2/2; ∠СВD=45°; ∠ВСD=45°.
∠АВС=30°+45°=75°.
СD=ВD=∠6.
АС=АD+СD=√2+√6≈1,41+2,45=3,86 см.