Мв=5
Ав=10
Т.к точка м серидина!!!!
1.Стороны подобного треугольника так же пропорциональны числам 2,2,3. Меньшая сторона равна 5. 5:2=2,5 Приходится на одну часть. 2,5*3=7,5 Ответ стороны Δ равны 5, 5, 7,5 2.биссектриса делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам. 36:х=18:(24-х) 18х=36(24-х) 18х=864-36х 18х+36х=864 54х=864 х=16 24-16=8. ответ:16 и 8
1. в основании квадрат, сторона=корень(площадь основания)=корень16=4, периметр основания=4*4=16, площадь боковой поверхности=1/2 периметр*апофема=1/2*16*5=40, площадь полная=площадь основания+площадь боковая=16+40=56
2. конус АВС, ВО-высота=6*корень2, АО=ОС=радиус=3, треугольник АВО прямоугольный, АВ-образующая=корень(АО в квадрате+ВО в квадрате)=корень(9+72)=9, площадь боковая=пи*радиус*образующая=пи*3*9=27пи
3. радиус шара=1/2диаметр=8/2=4, поверхность шара=4пи*радиус в квадрате=4пи*4*4=64пи
28:2=14
14:2=7
ответ: ОМ =7
Замечание: равносторонний треугольник не может быть тупоугольным)))
видимо, опечатка во второй задаче...
Обе задачи очень похожи по логике решения: из двух формул для площади можно установить зависимость между сторонами треугольника или стороной и высотой треугольника и по теореме Пифагора найти нужный отрезок.
1) для любого описанного многоугольника (не только для треугольника) площадь можно вычислить через радиус вписанной окружности:
S = p * r (где p -это полу-периметр)
т.к. треугольник равнобедренный, основание разобьется на два равных отрезка (х) и отрезки касательных, проведенных из одной точки к окружности, равны)))
получим четыре равных отрезка на сторонах треугольника и еще два равных отрезка обозначим (у), осталось записать т.Пифагора...
2) здесь потребуется другая формула для площади вписанного треугольника --через радиус описанной окружности:
S = a*b*c / (4R) и т.к. треугольник тупоугольный (по условию), следовательно, тупой угол треугольника опирается на дугу окружности, которая больше 180°