Применена теорема о трех перпендикулярах, формула радиуса вписанной окружности
По теореме Менелая.
В треугольнике АСН с секущей МВ имеем:
(АМ/МС)*(СК/КН)*(НВ/ВА)=1. Отсюда
1*(4/1)*(НВ/ВА)=1. НВ/ВА=1/4.
В треугольнике АВМ с секущей НС имеем:
(АН/НВ)*(ВК/КМ)*(МС/СА)=1.
Учитывая, что (НВ/ВА)=1/4, имеем АН/НВ=3/1.
Отсюда (3/1)*(ВК/КМ)*(1/2)=1.
ВК/КМ=2/3. Но ВМ=4, значит ВК=4*(2/5)=8/5.
Тогда из прямоугольного треугольника НВК
по Пифагору ВН=√(ВК²-КН²) или
ВН=√(64/25-1)=√(39/25), а ВС из треугольника СНВ
ВС=√(ВН²+НС²) или ВС=√(39/25+25)=√664/5=2√166/5.
Ответ: ВС=0,4√166 ≈ 5,2.
1)АМ и СМ
Это правильный ответ, потому что они пересекаются и вдобавок образуют прямой угол.
H=√(b²-(a/2)²)=√(25²-15²)=√400=20см а площадь S=a*h/2=(30*20)/2=300см²
Половина периметра параллелограмма равна 36/2=18 см.
Пусть одна часть равна х см, тогда по условию РС=4х; ОР=5х.
Составим уравнение ОР+РС=18; 4х+5х=18; 9х=18; х=18/9=2 см.
ОР=4·2=8 см; РС=5·2=10 см.
Ответ: 8 см, 8см,10 см, 10 см