1.
Сложив эти неравенства, получим
2,2<√5<2,3
1,7<√3<1,8
2,2 + 1,7<√5 + √3 < 2,3 + 1,8
3,9 < √5 + √3 < 4,1 - это ответ
2.
Второе неравенство преобразуем, умножив его на (-1)
1,7 < √3 < 1,8
- 1.8 < - √3 < - 1,7
А теперь сложим
2,2 < √5 < 2,3
-1,8 < -√3 < - 1,7
и получим
2,2 - 1,8 < √5 - √3 < 2,3 - 1,7
0,4 < √5 - √3 < 0,6 - это товет
3.
Перемножим эти неравенства
2,2 < √5 < 2,3
1,7 < √3 < 1,8
и получим
2,2 * 1,7 < √5 * √3 < 2,3 * 1,8
3,74 < √15 < 4,14 - это ответ
=-56а-4(а^2-2*a*7+7^2)=-56a-4(a^2-14a+49)=-56a-4a^2+4*14a-4*49=-56a-4a^2+56a-156=-4a^2-156=-4*(a^2+49)
Как известно, перпендикуляр, опущенный из центра окружности на хорду, делит ее пополам.Значит перпендикуляр точно проходит через центр (по условию он хорду делит пополам ). Прямые паралельны, значит их перпендикуляр совпадает и проходит через центр Концы хорд соединяем с центром окружности. Получаем два равнобедренных треугольника с вершинами в одной точке - центром окружности. Стороны равнобедренных треугольников = радиусу.Из середины равнобедренных треугольников проводим медианы, которые являются высотами. Прямая соединяющая хорды перпендикулярна к ним и проходит через центр окружности.
1) -3a²+3ab= -3a(a-b)
2) -3a-3a²c= -3a(1+ac)
3) -3a+6ay= -3a(1-2y)
4) 3a-3ab= 3a(1-b)
5) -9ax-3a⁴y= -3a(3x+a³y)
6) 3a⁵-3a=3a(a-1)(a+1)(a²+1)
решение смотри во вложении