Ответ: 18°
Объяснение: если обозначить равные накрест лежащие углы (х) при параллельных BC||AD и секущей AF и вспомнить, что сумма углов, прилежащих к одной стороне параллелограмма=180° (это односторонние углы), то можно записать
уголCDF + 130° - x + 32° + x = 180°
уголCDF + 162° = 180° - 162° = 18°
разумеется, еще нужно вспомнить, что сумма углов треугольника =180° и то, что противоположные углы параллелограмма равны)
Если одна прямая лежит в плоскости, а другая пересекает эту плоскость в точке, не лежащей на первой прямой, то прямые скрещивающиеся. Взять, например, плоскость альфа. В ней лежит прямая c, прямая AB пересекает ее в точке А, А не принадлежит прямой с. Вывод: прямые <span>скрещивающиеся, не пересекаются.</span>
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Найдем стороны четырехугольника.
Вектор АВ{Xb-Xa;Yb-Ya} или АВ{6;4}.
Его модуль (длина): |AB|=√(X²+Y²)=√(36+16)=√52.
Вектор ВС{6;-9}, его модуль |BC|=√(36+81)=√117.
Вектор CD{-6;-4}, его модуль |CD|=√(36+16)=√52.
Вектор AD{6;-9}, его модуль |AD|=√(36+81}=√117.
Мы видим, что противоположные стороны четырехугольника попарно равны, следовательно, четырехугольник АВСD - параллелограмм с периметром Р=2(√52+√117).
трудно понять что написано на листике может перефотографировать ....................................