MSP=BMD вот это реальный ответ
4. а=6i-8k=6i+0j-8k → a=(6;0;-8)
|а|=√(6²+0²+(-8)²)=√(36+64)=√100=10
а•b=|a|•|b|•cos(a;b)=10•1•cos60°=10•1/2=5.
если а перпендикулярно c, то а•c=0
a•c=6•4+0•1+(-8)•m=0
24-8m=0
8m=24
m=24/8
m=3.
5. A(3;-1;3)
B(3;-2;2)
C(2;2;3)
Д(1;2;2)
(AB;CД)-?
АВ=(Хв-Ха;Ув-Уа;Zв-Za)=
=(3-3;-2-(-1);2-3)=(0;-1;-1).
CД=(Хд-Хс;Уд-Ус;Zд-Zс)=
=(1-2;2-2;2-3)=(-1;0;-1).
соs(АВ;СД)=(АВ•СД)/(|АВ|•|СД|)
АВ•СД=0•(-1)+(-1)•0+(-1)•(-1)=1
|АВ|=√(0²+(-1)²+(-1)²)=√2
|СД|=√((-1)²+0²+(-1)²)=√2
|АВ|•|СД|=√2•√2=2
соs(АВ;СД)=1/2 →
(АВ;СД)=60°=π/3
6. смотри рисунок.
ДД1=2ДО
ДО - этотвыстота тетраэдра
найдем ДО:
ОС=R (радиус описаной окружности, вокруг треугольника АВС)
R=а/√3
ДО²=СД²-ОС²=а²-а²/3=
=3а²/3-а²/3=2а²/3
ДО=а√(2/3)
ДД1=2а√(2/3)
Угол, ВАС РАВЕН- 60° ГРАДУСАМ
Соотношение углов, образованных хордами окружности, а также соотношение пропорций четырехугольника, вписанного в окружность. Для решения этой геометрической задачи, потребуется вспомнить два утверждения:
1. Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами
2. <span>Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.
Обозначим дуги BC=x; AD=y.
Тогда (x+y)/2=68 и (x-y)/2=36
Домножим обе части обоих уравнений на 2 и сложим эти два уравнения.
х=ВС=104.
угол ВАС опирается на дугу ВС, значит сам угол меньше в 2 раза.
Ответ: угол ВАС равен 52 градуса.
</span>
АВ=8 см
8:2=4 (см) - радиус каждого из меньших кругов.
S маленького круга= 3,14•4•4=50,24 (см2)
50,24•2=100,48 (см2) - сумма площадей двух маленьких кругов.
радиус большего круга = 2•радиус маленького круга.
2•4=8(см) - радиус большего круга.
S=3,14•8•8=200,96 (см2) - площадь большего круга.
200,96-100,48=100,48 (см2) - площадь закрашенной части большего круга.
Ответ: площадь закрашенной части большего круга равна 100,48 см2.