Сначала найдём радиус основания!
Прямоугольный треугольник со сторонами 3 4 5 наз-ся египетским.
известны гипотенуза 5 и катет 4, значит другой катет равен 3
S пов. = 1/2Сl
где:
С - длина окружности 2πr основания
l- образующая
S= 1/2×2πrl
двойки сократятся
3×5π = 15π = 47,1
Т.к. прямоугольный треугольник равнобедренный, значит катеты равны и острые углы так же равны.
сумма углов в треугольнике=180°, один из углов 90° (т.к. Δ прямоугольный), пусть один из острых ∠ - х, тогда
2х+90°=180°
2х=90°
х=90°:2
х=45° - острые углы Δ
аналогично с катетами. Пусть х - катеты, тогда по теореме Пифагора:
х²+х²=(3√2)²
2х²=18
х²=9
х=3 - катеты
В равностороннем треугольнике биссектриса будет также медианой и высотой. Значит, AL - высота, тогда она перпендикулярна той стороне, к которой проведена, то есть BC.
Угол ВОА=углу СОД (вертик.)
треуг ВОА= треуг СОД (1-ый призн, по 2 -ум торонам у углу между ними), значит АО=ОД , треуг АОД-равнобедр