Каждый угол прямоугольника равен 90°
Диагональю он делится в отношении 4:5, т.е. на углы
90°:(4+5)*4=<em>40</em><em>°</em>
и 90°:(4+5)*5=<em>50</em><em>°</em>
Диагонали прямоугольника равны, точкой пересечения делятся пополам и со сторонами прямоугольника образуют равнобедренные треугольники, сумма углов которых 180°
Углы треугольника, образованного половинами диагоналей с боковой стороной, равны <em>40°,40°, и угол между диагоналями180°-2•40°=100°</em>
Углы треугольника, образованного половинами диагоналей с большей стороной, равны <em>50°,50°, и угол между диагоналями 80°.</em>
<u>Ответ: </u>Диагонали прямоугольника при пересечении образуют углы 100°и 80°. Обычно указывается меньший угол. Ответ:<em> 80°</em>
1. средняя линия = 1/2 стороны.
получается треугильник со сторонами 2,3 и 4 см
периметр = 2+3+4 = 9 см
1.Диагонали ромба пересекаются под прямым углом, поэтому получим прямоугольный треугольник АВО
2.По т.Пифагора АВ^2=AO^2+OB^2, т.е. АВ^2=25+144=169, АВ=13.
3.Площадь прям.треуг-ка АВО=АО*ОВ/2=AB*OH/2, где ОН=высота=расстояние от точки пересечения диагонали до стороны ромба.
12*5/2=13*ОВ/2
<span>OB=60/13=4 целых 8мь 13тых</span>
В восьмой задачи непонятные условия
Пирамида КАВС, в основании треугольнк АВС, АВ=ВС=5, АС=6, О-центр описанной окружности, КО-высота пирамиды, КА=КС=КВ=корень10, АО=СО=ВО=радиусы описанной окружности, проводим высоту ВН на АС=медиане, АН=НС=1/2Ас=6/2=3, треугольник АВН прямоугольный, ВН=корень(АВ в квадрате-АН в квадрате)=корень(25-9)=4, площадьАВС=1/2*АС*ВН=1/2*4*6=12, радиус описанной=(АВ*ВС*АС)/(4*площадьАВС)=(5*5*6)/(4*12)=3,125=25/8, треугольник АОК прямоугольный, КО-высота=(КА в квадрате-АО в квадрате)=корень(10-625/64)=корень15/8