Периодичность остатков:
- если число делится на 2 с остатком, то остаток = 1;
- если число делится на 3 с остатком. то остаток = 1 или 2.
Задумано число х; (х+1)/2→остаток 1; (х+2)/3→остаток 2.
Если число делится на 2 с остатком, то оно нечетное.
Остатки при делении на 6 могут быть равны 1, 2, 3, 4, 5, т.к. х - нечетное число, то рассматриваем остатки 1, 3 и 5: 6х+1; 6х+3 и 6х+5.
Признаки делимости на 6: число делится на 6, если оно делится без остатка на 2 и на 3 - запись числа оканчивается четной цифрой, а сумма его цифр делится на 3 без остатка.
(6х+1)/3→остаток = 1;
(6х+3)/3→кратно 3, делится на 3 без остатка;
(6х+5)/3→остаток = 5
Ответ: Искомое число при делении на 6 дает в остатке 5.
Минимальное число, которое делится на 2, 3 и 6 без остатка - это 6,
значит минимальное искомое число = 11: 11/2=5(1); 11/3=3(3); 11/6=1(5).
Следовательно, искомое число можно задать формулой; 11+6n, где
n - натуральное число ≥1.
58 59
85 89
95 98
Еще можно по формуле 3! = 3 * 2 *1 = 6
<span>Ответ: 6 </span>
9z+17-(4z-5)=38
9z+17-4z+5=38
5z+22=38
5z=38-22=16
z=16/5=3.2
количество кустов обозначим за а:
а=30+k-6=k+24
1)k=26
а=50
2)k=35
а=59